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The behavioral neuroscience of anuran social signal processing
Walter Wilczynski1 and Michael J Ryan2

Acoustic communication is the major component of social

behavior in anuran amphibians (frogs and toads) and has served

as a neuroethological model for the nervous system’s processing

of social signals related to mate choice decisions. The male’s

advertisement or mating call is its most conspicuous social signal,

and the nervous system’s analysis of the call is a progressive

process. As processing proceeds through neural systems,

response properties become more specific to the signal and, in

addition, neural activity gradually shifts from representing sensory

(auditoryperipheryandbrainstem) tosensorimotor (diencephalon)

to motor (forebrain) components of a behavioral response.

A comparative analysis of many anuran species shows that

the first stage in biasing responses toward conspecific signals

over heterospecific signals, and toward particular features of

conspecific signals, lies in the tuning of the peripheral auditory

system. Biases in processing signals are apparent through the

brainstem auditory system, where additional feature detection

neurons are added by the time processing reaches the level of

the midbrain. Recent work using immediate early gene

expression as a marker of neural activity suggests that by the

level of the midbrain and forebrain, the differential neural

representation of conspecific and heterospecific signals

involves both changes in mean activity levels across multiple

subnuclei, and in the functional correlations among

acoustically active areas. Our data show that in frogs the

auditory midbrain appears to play an important role in

controlling behavioral responses to acoustic social signals by

acting as a regulatorygateway between the stimulusanalysis of

the brainstem and the behavioral and physiological control

centers of the forebrain. We predict that this will hold true for

other vertebrate groups such as birds and fish that produce

acoustic social signals, and perhaps also in fish where

electroreception or vibratory sensing through the lateral line

systems plays a role in social signaling, as in all these cases

ascending sensory information converges onto midbrain nuclei

which relay information to higher brain centers.
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Introduction: acoustic communication in
anuran amphibians
Social behavior emerges from neural processing that

transforms sensory representations of social signals into

the expression of a behavioral response. The acoustic

communication system of anuran amphibians (frogs and

toads) has served as a valuable neuroethological model for

this process [1–3,4�]. Anurans are relatively uniform in the

basic communication strategy employed for reproductive

social interactions. Almost universally, males aggregate at

breeding sites where they produce an advertisement, or

mating, call that serves to attract females. This acoustic

communication system plays an important role in the

evolutionary processes of speciation and sexual selection:

the conspecific call and the female’s preferential response

to it can restrict genetic exchange to members of the same

species, and female preferences for calls among conspe-

cifics can lead to the further evolutionary elaboration of

calls [5�,6��] (for perspectives on other taxa, see [7,8]).

Males also respond to male advertisement calls, usually

by counter-calling, and like females they respond pre-

ferentially to conspecific calls over heterospecific ones.

A major focus of neuroethological work on anuran acous-

tic communication has been on interspecific variation in

vocal signals and the relationship of that signal variation to

interspecific variation in auditory processing. This work is

driven by the question of how species-specific signals are

encoded by the nervous system in a manner that guides

receivers to respond preferentially to conspecific over

heterospecific signals. Work by many labs suggests that

the analysis of advertisement calls leading to response

decisions is a progressive process from the periphery to

the forebrain. Recent work has shown that the process is

more complex than a simple processing hierarchy, moving

from less to more complex neural responses, although that

certainly is an important component. Changes also occur

in the way neural activity patterns in different brain

regions are correlated with each other; that is, changes

in functional connectivity are a critical component under-

lying decision-making. Figure 1 outlines the various

processes that take place as acoustic social signals are

processed by the frog brain, processes which we cover in

this review.

Species differences exist at the level of the ear in differ-

ences in bandpass characteristics and tuning that generally

match the frequency composition of important com-

ponents of the advertisement call. Capranica articulated

the behavioral relevance of species specializations in

peripheral tuning in his classic papers in the 1960s, where

he proposed the ‘matched filter hypothesis’ [9,10��].
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Capranica’s idea was that tuning of the ear generally

matches the spectral frequency peaks of a species’ call,

thus biasing the organism’s sensory system to detecting

their species’ call among the noise and irrelevant hetero-

specific signals that threaten to obscure it. An individual

frog could use the match between call and tuning to

determine whether a signal was in fact that of a conspecific

particularly when there are multiple frequency peaks in the

Anuran social signal processing Wilczynski and Ryan 755

Figure 1

Aspects of social signal processing in the nervous system of anuran amphibians, superimposed on schematic dorsal view of a frog brain showing the

basic ascending auditory pathways (not all connections are shown). Rostral is at the top, caudal at the bottom. List of abbreviations: Components of

the VIIIth cranial nerve complex: G VIII vestibulocochlear nerve ganglion; N VIII vestibulocochlear nerve; AP amphibian papilla; BP basilar papilla; AVC

anterior vertical canal; PVC posterior vertical canal; HC horizontal canal; S sacculus; L lagena. Lower brainstem auditory areas: CN caudal nucleus;

DLN dorsal lateral nucleus; SON superior olivary nucleus; NLL nucleus of the lateral lemniscus. Midbrain torus semicircularis subdivisions: Tl laminar

nucleus; Tm magnocellular nucleus; Tp principal nucleus. Diencephalon: A anterior thalamic nucleus; C central thalamic nucleus; P posterior thalamic

nucleus; VM ventromedial thalamic nucleus; SC suprachiasmatic nucleus. Telencephalon: Pm medial pallium; Sep septal complex; Str striato-pallidal

complex. Illustration of frog brain and connections from [11]. (a) Processes involved in the analysis of conspecific social signals as information ascends

from the ear though the brain. (1) Neural responses in the ear generated by two auditory end organs, the amphibian and basilar papillae, are biased

toward the spectral features of the conspecific call. (2) As information ascends from the lower brainstem to the midbrain, response properties of cells

become more specialized for coding elemental spectral and temporal features of the conspecific call. (3) In the midbrain, many neurons act as

specialized feature detectors for either spectral or temporal call characteristics, which in turn relay this information to forebrain areas regulating motor

and physiological responses to the call. However, the call is best represented there by activity distributed in multiple midbrain neurons across its

subnuclei, that is, by a process of population coding. (4) In addition to changes in the firing rates of neurons within brain nuclei, behavioral salient

signals like conspecific social signals induce changes in the correlated patterns of activity locally and across brain divisions, that is, a change in the

functional connectivity of brain areas. (b) Coding of acoustic social signals at different levels of the frog nervous system. In the brainstem (medulla and

midbrain), neural activity is driven by sensory features of the signal. Activity in thalamic nuclei is correlated with sensory features and movement during

the stimulus period. Telencephalic activity in most areas is more strongly correlated with movement than with stimulus features. The torus

semicricularis of the midbrain (circled in red) is a key gateway for transferring sensory information from lower levels to the motor and endocrine control

areas of the forebrain and its properties are important for generating sex differences in responding as well as changes in responding with physiological

state.
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call. In that case, behavioral responses depend on the

activation of those sensitive portions of the ear simul-

taneously or in some characteristic temporal sequence

(depending on the frequency structure of the call).

Capranica noted that the central nervous system would

need to extract information from the ear and further

process it. In fact, the frog central auditory system does

gradually construct neurons with feature-detector charac-

teristics that respond to particular frequency combinations

or temporal characteristics that typify the species adver-

tisement call as processing proceeds sequentially from

caudal to rostral auditory nuclei in the brain. This

species-typical tuning bias is carried through lower brain-

stem auditory nuclei. Additional frequency specializations

may occur, and responses to temporal features of the call

begin to appear in this part of the brain. It is not until the

midbrain, however, that a significant integration of auditory

information into complex feature detectors first occurs.

The midbrain auditory center as an analyzer of
social signals
The anuran auditory midbrain is the torus semicircularis,

a homolog of the inferior colliculus [11]. It is composed of

several subnuclei, the most significant of which is the

laminar nucleus. Laminar nucleus neurons provide a

significant portion of the torus’ output to both forebrain

and brainstem areas, and are rich in receptors for a variety

of hormones and neuromodulators. Walkowiak and

Luksch [12] and others [11,13–15] proposed the torus

to be a sensory-motor interface, that is, a key neural area

that links sensory input to behavioral responses.

Throughout the anuran torus, neurons show complex

response properties with special sensitivity to behavioral

important call features [11,16–18]. Some cells respond to

combinations of tones characteristic of calls. Others are

temporally tuned to features such as pulse or amplitude

modulation rate that are important for call recognition.

Edwards et al. [19,20] (see also [21�]) reported a remark-

able example of this specialization: toral neurons that

‘count’ pulses and are extremely sensitive to the inter-

pulse interval. These neurons respond only after a certain

number of pulses have occurred and only if the interpulse

intervals are consistent during that counting phase. Such

specialized neurons provide a mechanism for the torus to

ascertain critical temporal information needed to identify

species-specific advertisement calls in those species that

employ amplitude modulated trills. Rose and Brenowitz

[22], in fact, found that male Hyla regilla use interpulse

interval information of the kind important for these toral

cells to discriminate advertisement from aggressive calls

of neighboring males and mount the appropriate beha-

vioral response.

The spectral and temporal tuning characteristics of toral

neurons show clear links between midbrain auditory

processing and behavioral expression. However, the accu-

mulated electrophysiological studies show that the indi-

vidual midbrain cells each code only a portion of the

information necessary for true call representation [16,17].

Spectrally tuned cells, for example, may respond best to

particular combinations of tones, but none is so selective

that it only responds to a conspecific call. Moreover,

spectrally tuned cells do not have a particularly strong

bias toward temporal properties. Similarly, the temporally

tuned neurons have broad spectral bandpass character-

istics, so have no preference for the frequency character-

istics of the signals carrying the temporal information. If

frogs attend to both the spectral composition and the

temporal patterns that define their calls, it must be with at

least two populations of neurons, as no individual mid-

brain cells are capable of doing both and in fact none of

either type capture more than one or two call features.

Therefore, if information necessary to recognize conspe-

cific calls reliably is present at the level of the midbrain, it

must be encoded in the population response across some

area of the torus. Population coding has been invoked to

explain the representation of complex stimuli in many

mammalian sensory systems [23–29], often in regards to

cortical processing. In the mammalian auditory system,

population coding in the cortex and midbrain have pro-

vided insights into processing amplitude, location, and

spectro-temporal features of complex signals.

Investigations of anuran population coding and call pro-

cessing have not reached the level of sophistication

represented by these studies. However, recent work using

immediate early gene (IEG) expression [30�,31] as a

marker of stimulus-evoked neural activity has suggested

that population coding is an important component of call

representation in the frog auditory midbrain. Using IEGs

to denote neural responses does have its limitations

[32��], but it allows one to overcome some significant

technical limitations encountered in traditional electro-

physiological studies in non-mammalian vertebrates such

as amphibians, reptiles and fish. Single cell recording in

such small animals generally provides a limited sample of

neurons in any one individual, constraining the statistical

approaches one might use to extract population codes.

Moreover, their very small brains and the general lack of

stereotaxic methods and maps make it difficult to mark

multiple recording sites in a single individual with

enough precision to reliably delineate subarea locations.

IEGs allow precise anatomical measurements of activity

(gene expression) levels across a brain area and between

multiple nuclei throughout the central nervous system.

Hoke et al. [31] used this approach to assess IEG expres-

sion (using the immediate early gene egr-1 (also called

ZENK, zif268, NGFI-A, and krox-24) in the torus of the

túngara frog (Physalaemus pustulosus) in response to a

variety of conspecific, heterospecific, and biologically

neutral acoustic stimuli. A simple analysis of mean

expression levels showed that IEG expression was higher
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in response to conspecific calls in most toral subnuclei,

with the laminar toral nucleus showing the clearest

difference to behaviorally salient conspecific calls com-

pared to other stimuli. These results in themselves are

not surprising given the sensory bias toward conspecific

calls apparent even in the auditory periphery. What did

emerge, however, from a discriminant function analysis

was that information in the activity levels across all four

toral subnuclei responding to calls was the best predictor

of stimulus type, correctly identifying different types of

calls 85% of the time. Even more interesting, the results

were not explainable by any simple acoustic features.

Rather, the activity pattern across the torus appears to

be an emergent property related to overall character-

istics and behavioral salience of complex acoustic sig-

nals.

Functional network changes as codes for
social signals
Population coding is a process whereby responses across

different neurons (or regions) represent information about

a signal. Signals may also differentially change the

relationship among brain regions in their responses; that

is, how tightly activity in one brain area correlates with

activity in other areas. The activity correlations among

brain regions define their ‘functional connectivity’, that is,

how activity in one brain area predicts activity in another,

a process that can be the result of direct connections,

indirect connections, or common inputs. Such correlated

activity patterns emerge rapidly and transiently and are

tied to a particular context or input. Functional connec-

tivity has emerged as an important concept explaining the

emergence of cortical patterns of activity underlying

higher cognitive processes examined in human imaging

studies [33�,34–36]. Although rarely used this way, IEG

studies can form the basis of functional connectivity

studies [37�] by providing a record of neural activation

during a stimulus. They can be valuable when functional

imaging is not feasible, as is the case for many small

animals and non-mammals. IEG mapping in túngara frogs

has revealed that shifts in functional connectivity accom-

pany changes in activity levels when frogs are hearing

conspecific signals. Hoke et al. [38��] compared IEG

patterns in túngara frogs hearing a conspecific advertise-

ment call (the ‘whine’), a similar but ecologically mean-

ingless heterospecific call, a conspecific aggressive ‘mew’

call, and a silent control. A correlation analysis showed

that hearing the conspecific advertisement call induced

much great coupling of activity (in the sense of correlated

patterns of IEG expression) across the brain, linking more

closely activity levels in the brainstem, midbrain, and

forebrain, than did hearing of the other signals (Figure 2).

An investigation [39] of functional networks showed that

different patterns of functional connectivity within the

hypothalamus were elicited by hearing conspecific calls,

heterospecific calls, and silence. Correlation changes were

apparent even among hypothalamic nuclei that did not

show statistically significant mean activity differences to

different signals.

The correlation analyses made possible by IEG studies

show that the behavioral relevance of a signal is

represented by interactions among both closely and dis-

tantly related brain areas as much as it is represented by

changes in mean activity within any one area. What these

changes in functional connectivity actually mean for

perception or behavior is still unresolved and is very

difficult to test experimentally. Nevertheless, these

results and those related to population coding provide

a new way to consider the relationship between brain and

behavior. This different view depends less on the idea

that there are discrete brain ‘centers’ for particular beha-

viors activated by stimuli, as opposed to considering

behavior as emerging from patterns of neural activity

tying sets of neurons or brain areas together in different

ways depending on the context or meaning of stimuli.

Sex differences in responding to signals
All of the work on frogs reviewed above treats the beha-

vioral neuroscience of social communication as a species-

specific problem, that is, how does the typical individual of

that species recognize its social signals? But of course, there

are considerable differences among individuals within a

species in terms of what a particular social signals means to

them and how they respond to those signals. Sex differ-

ences are a clear example of this. Males and females

respond very differently to male signals. For the acoustic

communication behavior of frogs, evidence points to the

midbrain auditory center, the torus semicircularis, as play-

ing a key role in mediating the transformation of signal

perception into a sexually differentiated response.

One of the most common features of animal social com-

munication is that, as a general rule, females respond to a

more restricted range of potential male signals than do

males to either female signals or male signals. This sex

difference is predicted by the different costs to the sexes

in responding inappropriately to sexual solicitation signals

(higher in females than males) compared to the costs of

not responding to a potential sexual signal (higher in

males than females) [40,41]. In the case of túngara frogs,

males and females differ in terms of how they respond to

calls: males most often respond vocally, and much less

often by moving toward the call, whereas females move

toward the call and do not vocalize. In addition, the sexes

differ in their selectivity: males vocalize in response to a

wide range of audible signals whereas females are much

more choosy when responding phonotactically [42–45]. In

principle, the neural correlates of sex differences could be

found in sensory areas, in brain areas serving as sensor-

imotor links, or in motor areas (or any combination). By

identifying the processing levels at which these stages

take place, one can then ascertain where male and female

neural responses differ.

Anuran social signal processing Wilczynski and Ryan 757
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This task can be accomplished through a covariance

approach that determines whether IEG activation in

different areas of the brain correlate best with either

conspecific signal presentation, or with movement

that occurred when a signal was present, or varied

with both signal presentation and movement [38��].
Within the brainstem auditory nuclei up to the mid-

brain, IEG expression predicts that signal reception is

on average higher for conspecific calls than other

sounds or silence, but does not covary with the indi-

vidual’s movement during the stimulus period. This

would be expected based on neurophysiological studies

of frog auditory processing and based on the fact that

the areas assessed are standard auditory nuclei increas-

ingly dominated by specializations to detect conspecific

calls at progressively more rostral levels. In the dien-

cephalic targets of the midbrain, however, IEG activity

covaries with both stimulus type and with movement.

Multiple forebrain areas also have increased IEG

expression to conspecific calls [39,46–48], but a covari-

ate analysis reveals that telencephalic limbic and basal

ganglia areas are either correlated to movement alone or

exhibit a movement by stimulus interaction. These

results indicate that ascending pathways in the frog

brain mediate a transition from primarily sensory, to

sensorimotor, to motor processing as the information

makes its way from brainstem, to thalamus, to telence-

phalon.

Where, then, do sex differences in activation arise?

Expression patterns in lower brainstem areas do not differ

in males and females (Figure 3). However, the laminar

nucleus of the torus does show a sex difference related

directly to the sex difference in the range of signals

generating a response [49��] (Figure 3). In males, mid-

brain IEG expression to conspecific Physalaemus pustu-
losus calls and to heterospecific P. petersi calls is not

significantly different, which is consistent with the

male’s behavior — males will vocalize in response to

both. Female toral IEG expression is significantly greater

in response to the P. pustulosus call than to the P. petersi
call, and females make phonotaxis responses to the

former, but not the latter; again, the analyses of brain

and behavior are congruent. These results suggest that

the midbrain is a key component of the neural mechan-

isms generating sex differences in responding to social

signals, and it acts by regulating the range of signals

passing from the auditory system to the forebrain. Exam-

ining the functional connectivity between midbrain and

forebrain also implicates the torus as a gateway contri-

buting to the sex differences in behavioral responses to

signals [47]. In females, there is a significant linear

correlation between laminar nucleus IEG expression

and forebrain expression; in males, the correlation is

not significant. Assuming that the correlation patterns

indicate something about the transfer of information

from midbrain to forebrain, one could interpret this result

758 Neurobiology of behaviour

Figure 2

Matrix indicating patterns of correlated activity, measured by the level of egr-1 expression, across regions of the telencephalon, hypothalamus,

thalamus, and midbrain (coded by gray scale) when Physalaemus pustulosus frogs heard a heterospecific Physalaemus enesefae advertisement call

(upper left), a conspecific aggressive call (the mew, upper right), a conspecific advertisement calls (the whine, lower left), or silence. Positive

correlations are in yellow, negative in blue, and no significant correlation is indicated by black. When hearing a conspecific advertisement call, neural

activation within and across brain regions becomes significantly more correlated indicating a change in functional connectivity. From [38��].

Current Opinion in Neurobiology 2010, 20:754–763 www.sciencedirect.com
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as showing much tighter control of the information flow

in females.

Somewhat surprisingly, the patterns of correlation among

forebrain nuclei do not differ in males and females

despite sex differences in IEG expression in several

forebrain areas [47]. This suggests that once activated,

forebrain areas work together similarly in males and

females, again indicating that the midbrain link between

auditory processing in the brainstem, and forebrain oper-

ations underlying behavioral responses, is the key to

generating sex differences in behavior. It is important

to note that these results do not reveal the reason for the

more major sex difference in what behavior males (vocal

response) and females (phonotaxis) most predictably

express in response to the same social signal (the male’s

advertisement call). Anatomical sex dimorphisms in des-

cending vocal control pathways have been identified

[50,51], and such anatomical differences could play a

role. Furthermore, neurophysiological or within-area cir-

cuits may exist at any level of processing, something that

IEG studies cannot identify. Nevertheless, the idea that

some type of a gateway regulates the passage of infor-

mation from sensory to motor areas, and that differences

in that choke point reveal themselves in sex and possibly

other differences in behavior have been advanced before.

Kimchi et al. [52��] suggested something similar for sex

differences in response to olfactory social signals.

Neural correlates of the túngara frog’s intrasexual differ-

ences in responding to conspecific signals also point to the

laminar nucleus of the torus as a key regulatory gateway.

Female frogs (like many female vertebrates) vary in their

receptivity toward male advertisement signals depending

on their hormonal state [53,54]. Female túngara frogs also

vary in the range of signals to which they will respond:

when estrogen is high, females are more receptive and

more permissive in their responses [54]. Toral activity

levels, whether measured electrophysiologically or by

IEG expression, vary in a way that predicts the behavioral

pattern [55�,56,57]. Neural responses in the torus are high

when estrogen levels and female behavioral responses are

high, and decrease significantly after females release their

eggs and their receptivity drops. Thus the auditory mid-

brain might serve to control intrasexual differences in

social responding as well as intersexual differences, in

both cases by regulating the passage of sensory infor-

mation to effector regions of the forebrain.

The results of IEG studies on sex differences and changes

with hormonal state help to distinguish from among three

possibilities for the neural systems variation underlying

behavioral differences (Figure 4). Rather than arising

from differences in basic sensory processing, or in the

basic organization of forebrain motor or physiological

control areas, the most important mechanism may be

employing a strategically located gateway that regulates

the flow of information from sensory to motor areas.

Anuran communication as a model for
behavioral neuroscience
Acoustic communication in anuran amphibians may be a

specialized trait in that vertebrate group, but the prin-

ciples of neural processing underlying it can be applied to

the behavioral neuroscience of social communication

more generally. As in any other social behavioral context,

signals produced by conspecifics must be received,

represented in the central nervous system, and trans-

formed into a behavioral response. The anuran brain

shows a pattern in which sensory biases starting in

the periphery are honed into feature detectors represent-

ing elemental aspects of species-typical signals as the

Anuran social signal processing Wilczynski and Ryan 759

Figure 3

Relative expression of egr-1 in the superior olivary nucleus (left) and laminar nucleus of the torus semicircularis (right) in male (gray bars) and female

(black bars) túngara frogs hearing a conspecific Physalaemus pustulosus advertisement call, a heterospecific Physalaemus petersi advertisement call,

or silence. The results show that the superior olivary nucleus, a lower brainstem auditory center, responds best to the conspecific call in both sexes

and there is no sex difference. In the midbrain, however, male neural response is equally strong to the conspecific and heterospecific calls, whereas

female responses are significantly lower to the heterospecific call. This matches the behavioral response: males will call in response to either call,

whereas females express phonotaxis only to the conspecific call. Modified from [49��].

www.sciencedirect.com Current Opinion in Neurobiology 2010, 20:754–763
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information is gradually transmitted through the sensory

pathway. These feature detectors are not sufficient to

explain either the overall preference for conspecific over

heterospecific signals, or the variation in responding in

different physiological or environmental contexts.

Instead, more complete information about a social signal

is contained in a population code as well as in the pattern

of functional connectivity that emerges depending on

salience and context. It should be noted that not all

behavioral responses need to depend on a full analysis

of information emerging from processes at all levels of the

brain. Some responses may occur based solely on proces-

sing at lower sensory levels, much as happens for simple

motor reflexes. Some male frogs can respond vocally to

conspecific calls so rapidly that it is unlikely that the

forebrain is involved [58]. It is very likely that this

complex, multidimensional mode of representation is

important in many aspects of social behavior, and the

work in amphibians suggests that it is not a process

restricted to higher areas of the mammalian cortex.

In anurans, signal analysis culminates at the level of the

midbrain rather than in a sensory cortex (in fact, based on

its functional anatomy of the telencephalon, a functional

equivalent of primary sensory cortex may be lacking in

amphibians [11]). Nevertheless, the idea that processing

proceeds to sensorimotor representation, then to motor

representation in forebrain centers is an idea that can be

applied to many functional systems. Also important is the

idea that a gateway exists, regulating the transfer of

sensory information to effector centers. Our data show

that in amphibians the midbrain acts as the gateway, as it

is located in a strategic position between the purely

sensory areas of the lower brainstem and the motor and

endocrine regulatory areas of the forebrain. We believe

that the same may hold true for other vertebrates such as

birds and sound-producing fish that use acoustic social

signals. The auditory midbrain in fish, for example,

occupies such a position anatomically [59], has neurons

that code features of conspecific vocal signals [60–62], and

it contains steroid hormone receptors that may regulate

auditory processing there [63]. The processing of social

signals using other sensory systems, such as the electro-

sensory system that, like the auditory system, depend on a

midbrain relay, might similarly employ the midbrain as a

gateway. The location of the gateway is likely different

depending on the sensory system being used and the

behavior being mediated. One might not expect the

midbrain to act as the sensory gate for olfactory or visual

signaling, for example, because these sensory systems do

760 Neurobiology of behaviour

Figure 4

Differential sensory
sensitivity

Behavioral output Behavioral output Behavioral output

Forebrain areas Forebrain areas Forebrain areas

Auditory midbrain Auditory midbrain Auditory midbrain

Auditory brainstem Auditory brainstem Auditory brainstem

Auditory periphery Auditory periphery Auditory periphery

Sensorimotor
gateway

Differential motor
responsiveness
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(a) (b) (c)

Three possible mechanisms of could account for differences in the responses to male social signals between sexes, among individuals with in a sex, or

within an individual depending on physiological state or external conditions. (a) Sensory systems may be different, thereby biasing responses at higher

levels. (b) A neural locus acting as a ‘gateway’ controls access to behavioral control centers so that information transfer to higher behavioral or

physiological response areas is different. (c) Both the sensory processing and the transfer of information are constant, but the behavioral control

centers have different thresholds, filter functions, or other characteristics leading to the behavioral differences. Immediate early gene results in túngara

frogs suggest that the most likely possible mechanism is (b), with the gateway being the midbrain auditory center relaying information about calls to

forebrain areas controlling motor and endocrine functions. Figure courtesy of K. L. Hoke.
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not pass through an obligatory midbrain relay en route to

the forebrain. But if the amphibian acoustic communi-

cation paradigm can be generalized to communication in

other modalities, it would predict a gatekeeper function at

some critical node between sensory and motor systems.

Finally, this concept implies that both the perceptual

analysis features and the functional circuits defining

different male and female behaviors are present in both

sexes; what generates the sex difference in behavior is the

way in which the perceptual process is connected to those

functional circuits. Testing the limits of this idea would

be important for understanding the behavioral neuro-

science of social behavior and the true nature of sex

differences.
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in male and female túngara frogs. Anim Behav 2007,
73:955-964.

45. Bernal XE, Rand AS, Ryan MJ: Sexual differences in the
behavioral response of túngara frogs, Physalaemus
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